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Critical quantum fluctuations in the degenerate parametric oscillator
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We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our
analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the
positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space
equation, also known as the semiclassical theory. We show when these results agree and differ in calculations
taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just
above threshold. In this region where there are large quantum fluctuations in the conjugate variance and
macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond
very closely to the semiclassical theory.
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I. INTRODUCTION

In a companion paper@1#, we treated the below-threshol
nonlinear squeezing in a driven quantum parametric osc
tor. In the present paper, we turn to the problem of the c
cal fluctuations at threshold, where the previous perturba
theory, as well as diagrammatic techniques, all give div
gent results. We find that the use of an appropriately resc
asymptotic perturbation method, using the fundamental cu
stochastic process as the zeroth-order term, gives a w
behaved analytic theory. The results are in complete ag
ment with numerical simulations in the positive-P represen-
tation. In addition, the results also agree with the previo
nonlinear perturbation theory in an overlap region just bel
threshold. This allows us to obtain analytic predictions
complement numerical simulations, both below and ins
the region of strong critical fluctuations at the threshold
down-conversion—where quantum squeezing is at
largest.

The theory of linear quantum squeezing in the parame
oscillator is well developed, both in theory@2–11# and in
experiment@12,13#, in the region below threshold. Howeve
the usual theory is linearized, and therefore diverges in
interesting critical region. Methods including nonlinear co
rections often use many-body Feynman-diagram techniq
@7,8# to extend the linear theory@9–11#. These have the
drawback that they involve infinite sets of diagrams and
difficult to use systematically at the critical point. This typ
of problem is common in nonequilibrium quantum physic
It represents a fundamental drawback in the Feynm
diagram approach, in which both the coupling to reservo
and the nonlinear terms are treated as perturbations. O
methods involving number-state expansions—like direct
lutions of the master equation, or the stochastic Schro¨dinger
equation—are inapplicable to these large Hilbert spaces,
are usually insoluble from an analytic approach. We a
note that since this is a nonequilibrium system, it presents
example of a quantum phase transition in which the us
canonical-ensemble techniques are simply inapplicable.

We treat these questions using the positive-P representa-
tion @14#, combined with two matched expansion techniqu
1050-2947/2002/65~3!/033806~8!/$20.00 65 0338
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one valid below the critical point, and one valid at the critic
point. These methods agree in the overlap region be
threshold. Results are also verified by the use of direct
merical stochastic-equation simulations, which are valid
all regions. In the present paper, we focus on the criti
squeezing results. The broadband squeezing obtained by
sidering quadrature moments is optimized in a region
large critical fluctuations just above threshold, rather th
below threshold where we found@1# the optimum narrow-
band quantum squeezing in the spectrum.

We also compare the above results with a semiclass
approach, that is, a truncated Wigner phase-space equa
This equation corresponds to a classical theory with ad
vacuum fluctuations. A comparison between the positiveP
representation~fully quantum-mechanical! and semiclassica
theories permits us to see how far one can go and what is
limitation of this extended classical point of view. At th
critical point, fluctuations are large, and the system may
thought to display the characteristics of a macroscopic qu
tum superposition state~Schrödinger cat!, as it undergoes
quantum transitions between the two possible class
phases of the subharmonic field. We emphasize here tha
steady-state density matrix is expected to be a mixed stat
it is an open system. If there is any Schro¨dinger-cat-like
behavior, it would be related to a transient or condition
measurement, such as the squeezing spectrum itself.

There is a fundamental problem with any system used
investigate macroscopic superpositions. In order to show
any nonclassical ‘‘paradox’’ occurs, one must demonstr
that all hidden-variable explanations can be ruled out. S
prisingly, the semiclassical theory—which is fully realistic—
works extremely well in this region. Our conclusion is th
for this system, any macroscopic quantum superposition
may occur in the transient dynamics cannot be readily d
tinguished from classical realism.

II. HAMILTONIAN AND MASTER EQUATION

The model considered here is the degenerate param
oscillator and is described in detail elsewhere@1#. For com-
pleteness, we repeat the definitions of the Hamiltonian h
©2002 The American Physical Society06-1
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The system of interest is an idealized interferometer, wh
is resonant at two frequencies,v1 andv252v1. It is exter-
nally driven at the larger of the two frequencies. Both fr
quencies are damped due to cavity losses. Down-conver
of the pump photons to resonant subharmonic-mode pho
occurs due to ax (2) nonlinearity present inside the cavit
The Heisenberg-picture Hamiltonian that describes this o
system@2# is

Ĥ5Ĥ01Ĥ int1 (
j 51,2

\~ â j Ĝ j
†1â j

†Ĝ j !1ĤR . ~2.1!

An interaction picture is obtained with the definition th
free evolution is given by

Ĥ05 (
j 51,2

\v j â j
†â j .

In the case of resonant down-conversion, with just a s
ond harmonic, the interaction Hamiltonian is

Ĥ int /\5 iE @ â22â2
†#1

ix

2
@ â2â1

†22â2
†â1

2#. ~2.2!

Here â1 ,â2 represent the fundamental and second-harmo
modes, respectively, whileE is proportional to the coheren
input or driving field at the second-harmonic frequency,
sumed to be at exact resonance with the cavity mode. U
standard techniques@15# to eliminate the heat bath, we ob
tain the following master equation for the reduced dens
operator of the system in the interaction picture:

]r̂

]t
5

1

i\
@Ĥ int ,r̂ #1g1~2â1r̂â1

†2â1
†â1r̂2 r̂â1

†â1!

1g2~2â2r̂â2
†2â2

†â2r̂2 r̂â2
†â2!, ~2.3!

whereg i are the internal-mode amplitude-damping rates.
In the classical limit, the system has the well-known cla

sical equations of intracavity parametric oscillation,

da1

dt
5@2g1a11xa1* a2#,

da2

dt
5F2g2a21E2

1

2
xa1

2G . ~2.4!

These equations are valid in the limit of large photon nu
ber. There is a phase transition at the critical driving field
E5Ec5g1g2 /x, corresponding to an intracavity photo
number ofNc5g1

2/x2 . For driving fields below this value
one has

a150,

a25E/g2 , ~2.5!

while for fields above this value, the signal fielda1 is
bistable, with
03380
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x
~E2Ec!,

a25
g1

x
. ~2.6!

It is the behavior in the critical region that we are mo
interested in as the usual linearized methods break do
Just above the critical region, we see that the quantum
tem has some of the character of a Schro¨dinger ‘‘cat.’’ There
are two possible values for the subharmonic amplitudea1,
and the system prior to detection may be in a transient
perposition state of these amplitudes. This situation has b
analyzed previously for the case of a rapidly decay
second-harmonic field@16,17#. Here we investigate it for a
general case. We consider the question from the viewpoin
asking what signature of the observables of the system wo
entitle one to claim that a Schro¨dinger cat or macroscopic
superposition, was responsible.

A. The positive-P representation

In order to treat quantum evolution, we now turn to t
methods of operator representation theory, as described
viously @1#. We consider two types of representation — t
normally ordered positive-P representation and the semicla
sical truncated Wigner method. The positive-P representa-
tion equations are used to treat the full quantum evoluti
without any truncation of higher-order derivatives in th
Fokker-Planck equation. Given appropriate assumpti
about vanishing boundary terms~valid for x!g j ) , the fol-
lowing stochastic equations are obtained, for any driv
field E:

da15@2g1a11xa1
1a2#dt1Axa2dw1~ t !,

da1
15@2g1a1

11xa1a2
1#dt1Axa2

1dw2~ t !,

da25F2g2a21E2
1

2
xa1

2Gdt,

da2
15F2g2a2

11E2
1

2
xa1

12Gdt. ~2.7!

The nonvanishing stochastic correlations are given by

^dwk~ t !&50,

^dwk~ t !dwl~ t !&5dkldt. ~2.8!

This means thatdwk(t) represent two real Gaussian, unco
related stochastic processes, so that the amplitude of the
chastic fluctuations that act on the signal mode are depen
on the pump-field dynamics through the termAxa2.

B. The semiclassical theory

We can also write ac-number phase-space equation usi
an approximate form of the Wigner representation@18#,
6-2
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CRITICAL QUANTUM FLUCTUATIONS IN THE . . . PHYSICAL REVIEW A 65 033806
which is equivalent to stochastic electrodynamics. This
be mapped into the following stochastic differential coup
equations:

da15@2g1a11xa1* a2#dt1Ag1dw1~ t !,

da1* 5@2g1a1* 1xa1a2* #dt1Ag1dw1* ~ t !,

da25F2g2a22
x

2
a1

21EGdt1Ag2dw2~ t !,

da2* 5F2g2a2* 2
x

2
a1*

21EGdt1Ag2dw2* ~ t !. ~2.9!

Heredwk(t) is now acomplexGaussian white noise whos
mean and variance are given by

^dwk~ t !&50,

^dwk~ t !dwl* ~ t !&5dkldt. ~2.10!

The above equation is identical to the equation derived
positive-P representation when one discards the noise ter
both methods reproduce the well-known classical equat
in this limit.

C. Observable moments and spectra

The details of how observable moments and spectra
calculated in the positive-P stochastic method and th
Wigner representation are given in the previous paper@1#.
The technique for treating external-field spectra was in
duced by Yurke@3#, and by Collett and Gardiner@4#.

These external-field measurements are obtained from
input-output relations of

F̂ j
out~ t !5A2g j

outâ j~ t !2F̂ j
in~ t !, ~2.11!

where F̂ j
in(t) and F̂ j

out(t) are the input and output photo
fields, respectively, evaluated at the output-coupling mir
The most efficient transport of squeezing is obtained if
assume that all the signal losses occur through the ou
coupler, so thatg15g1

out . We will assume this to be the
case.

The quadrature variables of the system have the de
tions

x̂ j5~ â j1â j
†!,

ŷ j5
1

i
~ â j2â j

†!. ~2.12!

There are also corresponding external-quadrature-field v
ables, defined as

X̂j5~F̂ j
out1F̂ j

out†!,

Ŷj5
1

i
~F̂ j

out2F̂ j
out†!. ~2.13!
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Similarly, we can definec-number stochastic quadrature va
ables within the relevant representations, thus giving

xj5~a j1a j
1!,

yj5
1

i
~a j2a j

1!. ~2.14!

Of most interest here isŷ1 since this is the low-noise
squeezed quadrature; the instantaneous correlation func
of the intracavity field operators are called the moments. T
fundamental property of the positive-P representation is tha
the ensemble average of any polynomial of the random v
able a and a* exactly corresponds to the Hilbert-space e
pectation of the corresponding normally ordered product
the annihilation and creation operators. The fundame
property of the Wigner function is that the ensemble aver
of any polynomial weighted by the Wigner density corr
sponds~approximately, for the truncated Wigner case! to the
expectation of the corresponding symmetrized product of
annihilation and creation operators. Therefore, the trunca
theory with a positive Wigner function can be viewed
equivalent to a local realistic hidden-variable theory, sin
one can obtain quadrature fluctuation predictions by follo
ing an essentially classical prescription.

III. SCALED EQUATIONS: POSITIVE- P
REPRESENTATION

In order to avoid the divergences of the previous meth
at the critical point of this system whereE5Ec , we define
new scaled quadrature variables and use a different ex
sion @19# valid inside the critical region of um21u
5uE/Ec21u,Ag, whereg is a dimensionless coupling con
stant~typically g!1) defined by

g5
x

A2g1g2

.

The new pump-mode variablex2
c now corresponds to the rea

scaled depletion in the pump-mode amplitude, relative to
undepleted value at the critical point. The signal-mode va
able x1

c now describes the critical fluctuation amplitud
scaled to be of order 1 at threshold, whiley1

c is simply de-
fined asy1. The definitions are

x1
c5Agx1 ,

y1
c5y1 ,

x2
c5

1

g Fxx2

g1
22G ,

y2
c5A2g r

g
y2 . ~3.1!

It is convenient to also define a new scaled time and driv
field as
6-3
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h5
m21

g
5

1

g F E
Ec

21G ,
t5g1gt. ~3.2!

The parameterh is a measure of how close the driving fie
is to its value at the bifurcation threshold, scaled in terms
the coupling constant so that the critical region of large fl
tuations is defined byuhu,1 . The time has now been scale
both by the decay rate in the signal modeg1 and the param-
eterg.

In the case of the positive-P representation, the equation
in the new variables are functions of the dimensionless
rametersg,h, andg r5g2 /g1,

dx1
c5

1

2
@x1

cx2
c1gy1

cy2
c#dt1A2dwxc ,

gdy1
c52F2y1

c1
g

2
~x2

cy1
c2y2

cx1
c!Gdt2 iA2gdwyc ,

gdx2
c5g r@2h2x2

c2~x1
c2gy1

c2!/2#dt,

gdy2
c52g r@y2

c1x1
cy1

c#dt. ~3.3!

The Gaussian white-noise incrementsdwic ( i 5x,y) are
not independent, and have the following properties:

^dwic&50,

^dwxc
2 &5^dwyc

2 &5^11gx2/2&dt,

^dwycdwxc&5g3/2^y2&dt. ~3.4!

We can develop an asymptotic theory in the small-g limit
for the critical region, just as easily as below threshold. T
result is a simple theory that correctly predicts the scaling
the critical and squeezing fluctuations, as well as mak
close predictions of their size for finiteg. It is important to
note here the presence of theAgdwyc term in these equa
tions. This scaling factor ofAg, is added to ensure that th
fluctuations in this variable occur up to an order equival
to that of other mean values. This simplifies the procedure
truncating the deterministic and noise terms to a given or

The approximation we use here entails expanding the
chastic trajectories in an asymptotic series ing, and solving
the resulting equations on a term-by-term basis. This en
a power-series expansion similar to the one used be
threshold, except with new variables

xj
c5 (

n50

`

gnxj
(n) ,

yj
c5 (

n50

`

gnyj
(n) .

The first set of equations are
03380
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dx1
(0)5

1

2
x1

(0)x2
(0)dt1A2dwxc

(0) ,

gdy1
(0)522y1

(0)dt1A2gdwyc
(0) ,

gdx2
(0)5g r~2h2x2

(0)2@x1
(0)#2/2!dt,

gdy2
(0)52g r~y2

(0)1x1
(0)y1

(0)!dt. ~3.5!

The Gaussian white-noise incrementsdwxc
(0) , dwyc

(0) have
the variance

^^^@dwxc
(0)#2&&&5^^^@dwyc

(0)#2&&&5dt.

A significant point about these equations is that in t
squeezed quadrature, they1

(0) solution can be worked ou
without reference to any of the other variables, and it giv
zero noise in the external quadrature at zero frequency
course, couplings between the variables will emerge
higher orders in the expansion, and this generates the a
critical fluctuations in the squeezed quadrature. Also, they2

(0)

variable is simply driven by the other fields and can be o
tained as soon as the other fields are known.

A. Critical fluctuations

We now consider what happens at or near the class
threshold ofh50. In a model where the second-harmon
generation does not cause the pump mode to deplete
would havex2

(0)52h, and at threshold the critical fluctua
tions in x1 would diffuse outward without any bound. Whe
depletion is included, the critical fluctuations in the quad
turex1 are finite, but very slowly varying compared to tho
in the other variables. The pump field can therefore be a
batically eliminated to first order in the expansion.

Near threshold (gh!1) the decay term in the unsqueez
quadraturex1 is roughly2x2, which is of order 1. The pump
mode will be depleted, so obviouslyx2 must be negative in
order for this to be stable. The scaled pump-field decay
g r /g, and the squeezed-quadrature decay is of order 1/g. If
g r is much larger thang, it is possible to adiabatically elimi-
nate both the pump amplitude and the squeezed quadratu
the equations for the large critical fluctuationsx1. Since we
are taking the limit of smallg, we shall assume that this i
possible to zeroth order in the asymptotic expansion. In
adiabatic elimination, we must solve for the steady-state v
ues of the pumpx2, given an instantaneous first-order critic
fluctuationx1. To leading~zeroth! order this gives, wherex
5x1

(0) ,

x2
(0)52h2x2/2. ~3.6!

Substituting in the equation forx1, we find that

dx5~hx2x3/4!dt1A2dwxc . ~3.7!

This equation is a standard form of the stochastic equa
@20#, which is the real cubic process often found at a critic
point, even for thermal equilibrium systems. The solution
the distribution ofx is given by
6-4
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P~x!5exp~hx2/22x4/16!.

The steady-state critical variance inx1 is given to zeroth
order by

^x1
2& (0)5^x2&5

E x2dx exp~hx2/22x4/16!

E dx exp~hx2/22x4/16!

. ~3.8!

The variance of the critical fluctuations at the critic
point, h50, is therefore given to lowest order by the va
ance of a cubic process, which is a ratio ofG functions,

^x1
2& (0)5

4G~3/4!

G~1/4!
51.3520 . . . . ~3.9!

In a normally ordered representation, the normally
dered version of the quadrature variance operator differs
1 from its symmetric form. However, to this order in th
calculation, corrections of this size can be neglected. Thi
an example of much more general results on representa
invariance@21# of the large fluctuations that occur near cri
cal points. In general, these have a behavior to leading o
that is rather classical, and does not depend on the ope
ordering. Using this, we find the steady state of the
squeezed quadrature at threshold. Denoting the symm
expectation value by the subscriptS, to leading order we ge
~at the critical point!

^ x̂1
2&S5

1

g
^x2&5

4G~3/4!

gG~1/4!
.

This variable has the critical slowing down expected
threshold, that is, the unsqueezed signal quadrature is the
in which the critical fluctuations occur. The value for the si
of the critical fluctuations can be used to calculate the de
tion of the scaled pump-mode amplitudex2. Using Eqs.~3.2!
and ~3.8!, to first order ing it is

x2
(0)52h2^x2&/2 . ~3.10!

The size of the depletion is consistent with anN21/2 con-
version efficiency for pump photons to signal photons at
critical point. In summary, by using the fact that a cub
stochastic equation has a potential solution, the quadra
moments can be obtained for any driving field in the critic
region @20#.

B. Critical squeezing in positive-P representation

We can now find the steady-state variance of the squee
quadrature at threshold. Because the fluctuations in
squeezed quadrature are very small, we must work to hig
order in the asymptotic expansion to obtain a nontrivial
sult. To achieve this, it is most useful to introduce equatio
in the higher-order momentsy1

2 and z15x1y1. The corre-
sponding stochastic equations are derived using Ito rules
variable changes, so that
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2!522F112y1

21
1

2
g~x21x2y1

22y2z1!Gdt

12Agy1dwyc ,

gdz15F22z11
g

2
y2~2x1

21gy1
212g!Gdt1Agx1dwyc

1gy1dwxc . ~3.11!

The squeezing variance at threshold from Eq.~3.11! is
obtained by taking expectation values. At the steady st
^d(y1

2)&50. In addition, the expectation value of any noi
term is always zero in an Ito equation, so that

^y1
2& (1)52

g

4
^~11y1

2!x22y2z1&
(0). ~3.12!

The expectation value of the correlation betweeny1 and
any xi variable is trivial to zeroth order, as these must fa
torize. Thus, we can write immediately

^~11y1
2!x2&

(0)5^11y1
2& (0)^x2&

(0)5h2^x2&/4 .
~3.13!

However, the expectation value of correlations betwe
y2 andz1 does not factorize. We first must obtain the equ
tion for this correlation. To lowest order this is

gd~y2z1!52@2y21g r~y21z1!#z1dt1~noise!.

The noise correlations do not matter, since we can imm
diately take expectation values and obtain

^y2z1&
(0)5

2g r

21g r
^z1

2& (0)5
g r

412g r
^x2&.

To obtain this result we have once again used the fac
ization properties of they1 fluctuations to zeroth order. Com
bining the above results together, we find that the stea
state variance of the squeezed quadrature up to first ord
g is

^: ŷ1
2 :&52

1

2
2

gh

4
1

g

16S 213g r

21g r
D ^x2&. ~3.14!

This is plotted in Fig. 1, along with the predictions o
tained from the nonlinear corrections to the usual belo
threshold theory@1#. It can be seen that both theories agree
an overlap region where 12m.Ag . For u12mu,g so that
uhu,1, the below-threshold theory diverges, and the criti
expansion is needed to obtain correct results.

The intracavity squeezing moment for a model with
nondepleted pump mode is 1/2. Our theory predicts tha
depleted parametric oscillator will get no closer to this int
cavity lower limit than a term that scales asg , that is as
N21/2. The best squeezing in the overall moment is, pa
doxically, not just below, but rather just above threshold
can be seen that in contrast to the unsqueezed quadratur
dominant term in the decay to the steady state does not
6-5
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pend on the pump-mode photon numberN. This means the
squeezed quadrature does not experience critical slow
down as the unsqueezed quadrature does, and has a line
similar to the value below threshold. In practical terms,
unsqueezed critical fluctuations would be much easier to
serve, as they are the dominant effect at the critical poin

IV. SCALED EQUATIONS: SEMICLASSICAL THEORY

As in the positive-P equations, we must define ne
scaled-quadrature variables for the semiclassical equat
in order to avoid divergences at the critical point. We defi
these as previously, except fory2

c , which now must include
the large symmetrically ordered vacuum fluctuations,

y2
c5A2g ry2 .

The equations in these new variables are now

dx1
c5

1

2
@x1

cx2
c1Agy1

cy2
c#dt1A2dwx1~t!,

gdy1
c5F22y1

c1
Ag

2
x1

cy2
c2

g

2
x2

cy1
cGdt1A2gdwy1~t!,

gdx2
c5g rF2h2x2

c2
1

2
~x1

22gy1
2!Gdt12g rAgdwx2~t!,

gdy2
c52g r@y2

c1Agx1
cy1

c#12g rAgdwy2~t!, ~4.1!

where the nonvanishing moments of the noise variables

^dwx j
2 &5^dwy j

2 &5dt.

The stochastic equations can be solved by matching
powers of g in the corresponding time-evolution equatio
The zeroth-order set of equations is~discarding orders up to
one ing in the right side of the above set equations!

dx1
(0)5

1

2
x1

(0)x2
(0)dt1A2dwx1~t!,

gdy1
(0)522y1

(0)dt1A2gdwy1~t!,

FIG. 1. Squeezing moment withg2251000,g r50.5. The solid
line gives the below-threshold expansion; the dashed line gives
critical expansion.
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.

gdx2
(0)52g rF2h2x2

(0)2
1

2
~x1

(0)!2Gdt12g rAgdwx2~t!,

gdy2
(0)52g ry2

(0)dt12g rAgdwy2~t!. ~4.2!

We can solve for the steady-state values of the pumpx2
c ,

neglecting the noise in this quadrature

x2
(0)52h2~x1

(0)!2/2; ~4.3!

substituting this expression in the equation forx1
05x we

have

dx5@hx2x3/4#1A2dwx1~t!. ~4.4!

This equation is the same as obtained in the positive-P case,
generating the same distribution and, consequently, the s
steady-state critical variance.

Critical squeezing in semiclassical theory

Following the same procedure as in the positive-P repre-
sentation, we can now find the steady-state variance of
squeezed quadrature at threshold going to higher-order in
asymptotic expansion to obtain a nontrivial result. Introdu
ing equations in the higher order moments in the new v
ablesy1

2 and z15x1
cy1

c , the corresponding stochastic equ
tions are

gd~y1
2!522F2y1

2212
Ag

2
y2

cz11
g

2
x2

cy1
2Gdt

12A2gy1
cdwy1~t!,

gd~z1!5F22z11
Ag

2
x1

2y2
c1gAgy1

2y2
cGdt1A2gx1

cdwy1~t!

1A2gy1
cdwx1~t!. ~4.5!

The squeezing variance at threshold is obtained from
above equation taking the expectation values. At the ste
state we have

^y1
2&5

1

2
1

Ag

4
^y2

cz1&2
g

4
^x2

cy1
2&. ~4.6!

The expectation value of the correlation betweeny1
c and

x2
c variables is trivial in zeroth order, as this must factoriz

Thus we can write

^x2
cy1

2& (0)5^x2
c& (0)^y1

2& (0)5h2^x2&/4 ~4.7!

and then

^y1
2&5

1

2
2

gh

4
1

g

16
^x2&1

Ag

4
^y2

cz1&. ~4.8!

To obtain the correlation betweeny2
c and z1 we need to

write the equation for this correlation

he
6-6
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gd~y2
cz1!5H y2

cF22z11
Ag

2
x1

2y2
c1gAgy1

2y2
cG

1z1@2g r~y2
c1Agz1!#J dt1A2gx1

cy2
cdwy1~t!

1A2gy1
cy2

cdwx1~t!12g rAgz1dwy2~t!. ~4.9!

To lowest order we get

^y2
cz1&

(0)52
g rAg

21g r
^z1

2& (0)1
Ag/2

21g r
^x1

2y2
2& (0). ~4.10!

Combining the above results together, we find the stea
state variance of the squeezed quadrature up to first o
in g

^ ŷ1
2&5

1

2
2

gh

4
1

g

16
^x2&2

g

8 S g r

21g r
D ^x2&1

g

4 S g r

21g r
D ^x2&

5
1

2
2

gh

4
1

g

16S 213g r

21g r
D ^x2&, ~4.11!

where we have used the zero-order solution^y2
2& (0)52g r .

This result is exactly the same as obtained in positiveP
representation, giving quite confident support for the expr
sion, up to first order in perturbation theory, of the squee
quadrature at threshold.

V. NUMERICAL SIMULATIONS

The value of the nonlinear correction to the spectrum
the scaled internal squeezed quadrature,S(V), can be
worked out from a full numerical simulation@22# of the rel-
evant nonlinear stochastic equations. For the simulations
chose values ofg251023, g r50.5. The simulations used
total dimensionless time interval oftmax51000. Time steps
of Dt50.1 andDt50.2 were compared to ensure conve
gence. The algorithmic technique is described elsewhere@23#
and uses a semi-implicit central-partial-difference techniq
As done previously, to obtain the small nonlinear correctio
near the optimum squeezing, we simulated the differe
between the linear and nonlinear forms of the stocha
equation, in order to minimize sampling errors. It was a
useful to initialize thex quadratures with a Gaussian e
semble close to the known steady-state variance, in orde
reduce the time taken to achieve equilibrium.

Typically, the relative error in the correlations due to fin
step size was around 1024 with these step sizes.

Critical squeezing

At the critical point, whereh50, we used 104 trajecto-
ries, giving relative sampling errors of typically 231022.
The calculated squeezing moment from the critical point s
chastic differential equation simulations was^Y1

2&10.5
50.003861024. This is in poor agreement with the below
threshold expansion, which is only applicable forum21u
.g. The below-threshold expansion clearly fails closer
threshold than aboutm50.97 for this value ofg, and predicts
03380
y-
er

s-
d

f

e

-

e.
s
e
ic
o

to

-

infinite fluctuations in both quadratures at the critical poi
In the region whereum21u,g, much better agreement i
naturally obtained with the critical-point expansion of th
present paper, which predicts a value of^Y1

2&10.5
50.003 75. This agreement verifies our analytic predict
that the total squeezing, integrated over all frequencies
actually lower at and just above threshold, than it is ju
below threshold where the zero-frequency squeezing is m
mized.

Very similar results were obtained from the Wign
semiclassical-theory simulations, which is as expected fr
the predictions of the asymptotic theory.

We find that the spectral results for the squeezed qua
ture resulted in a value for the zero-frequency spectrum
V(0)52.023102260.431023. This is finite, but much
larger than the optimum squeezing value@1# obtained below
threshold. In other words, we find that the narrow-ba
squeezing is not as large as just below threshold—but
broadband squeezing is still improving at the threshold po
with an optimum value just above threshold.

VI. CONCLUSION

We have calculated the quantum fluctuations at the c
sical threshold, using a nonlinear stochastic positiveP
theory, with both asymptotic approximations and a numeri
technique.

At the critical point, the scaling behavior is quite differe
from the behavior just below threshold, and must be cal
lated by using an asymptotic perturbation theory, valid at
threshold itself. The total squeezing moment is actually m
mized at a driving field just above threshold and scales
Nc

21/2. This behavior was confirmed in our simulations. Th
apparent paradox can be attributed to the fact that the cri
fluctuations mostly tend to broaden the squeezing spectr
which has a strong effect at zero frequency, but does
diminish the total squeezing moment, which is integra
over all frequencies.

A calculation with the truncated Wigner method, or sem
classical technique, was also carried out. Well below thre
old, we found in a previous paper that while the linear ter
agreed with full quantum calculation, nonlinear correctio
and higher-order correlations tended to disagree, espec
for low second-harmonic losses. However, at the criti
point, the situation changes. Here, where the dominant te
are nonlinear, we find excellent agreement between the
methods. While quantum fluctuations are indeed large at
critical point, it appears that an equally acceptable interp
tation of the observed noise characteristics exists via a se
classical model, which is essentially a type of hidde
variable theory. Above threshold, when bistability is mo
pronounced, previous studies have shown that the two m
els can be readily distinguished by their tunneling pred
tions, which are completely different@5#.

As we have shown, in the region where incipient bistab
ity is evident, there are large quantum fluctuations and str
squeezing. However, due to coupling with the external r
ervoirs, the quantum behavior can be also rather well
scribed in a semiclassical model. This illustrates the prob
of trying to identify behavior characteristic of macroscop
6-7
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superpositions, which might be thought to exist in this si
ation. We suggest that it is necessary to prove that
classical-like hidden-variable theory can describe the
served behavior, if we wish to ascribe any paradoxical in
pretation to the observed results. Ideally, this would nece
tate the demonstration of a macroscopic Bell inequality@24#.

In the present case, the semiclassical description — wh
is essentially a hidden-variable theory — is able to ac
rately reproduce the quantum predictions near the crit
point. Thus, it seems that there is no uniquely ‘‘catlike’’ b
havior in the results we obtain here, at least for the param
values employed. This is an indication of difficulties in o
e

.

et
n,
.

t.

03380
-
o
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r-
i-

h
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al

er

serving Schro¨dinger-cat-like behavior in a physical syste
coupled to the outside world. Nevertheless, the pres
theory does give a case in which critical quantum fluctu
tions are soluble for a nonequilibrium phase transition, wh
does not have a Gibbs ensemble solution.
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