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Critical quantum fluctuations in the degenerate parametric oscillator
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We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our
analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the
positiveP representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space
equation, also known as the semiclassical theory. We show when these results agree and differ in calculations
taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just
above threshold. In this region where there are large quantum fluctuations in the conjugate variance and
macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond
very closely to the semiclassical theory.
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[. INTRODUCTION one valid below the critical point, and one valid at the critical
point. These methods agree in the overlap region below
In a companion papdt], we treated the below-threshold threshold. Results are also verified by the use of direct nu-
nonlinear squeezing in a driven quantum parametric oscillamerical stochastic-equation simulations, which are valid in
tor. In the present paper, we turn to the problem of the criti-all regions. In the present paper, we focus on the critical
cal fluctuations at threshold, where the previous perturbatioggqueezing results. The broadband squeezing obtained by con-
theory, as well as diagrammatic techniques, all give diversidering quadrature moments is optimized in a region of
gent results. We find that the use of an appropriately rescald@rge critical fluctuations just above threshold, rather than
asymptotic perturbation method, using the fundamental cubifelow threshold where we founid] the optimum narrow-
stochastic process as the zeroth-order term, gives a welPand quantum squeezing in the spectrum.
behaved analytic theory. The results are in complete agree- We also compare the above results with a semiclassical
ment with numerical simulations in the positiferepresen- approach, that is, a truncated Wigner phase-space equation.
tation. In addition, the results also agree with the previouslhis equation corresponds to a classical theory with added
nonlinear perturbation theory in an overlap region just belowacuum fluctuations. A comparison between the posigve-
threshold. This allows us to obtain analytic predictions torepresentatiorfully quantum-mechanicaland semiclassical
complement numerical simulations, both below and insid¢heories permits us to see how far one can go and what is the
the region of strong critical fluctuations at the threshold forlimitation of this extended classical point of view. At the
down-conversion—where gquantum squeezing is at it§l’itica| point, fluctuations are Iarge, and the system may be
largest. thought to display the characteristics of a macroscopic quan-
The theory of linear quantum squeezing in the parametri¢um superposition statéSchralinger ca}, as it undergoes
oscillator is well developed, both in theofg—11] and in  quantum transitions between the two possible classical
experimen{12,13, in the region below threshold. However, Phases of the subharmonic field. We emphasize here that the
the usual theory is linearized, and therefore diverges in théteady-state density matrix is expected to be a mixed state, as
interesting critical region. Methods including nonlinear cor-it is an open system. If there is any Sctlimger-cat-like
rections often use many-body Feynman-diagram techniqué@,ehaVior, it would be related to a transient or conditional
[7,8] to extend the linear theorj9—11]. These have the Measurement, such as the squeezing spectrum itself.
drawback that they involve infinite sets of diagrams and are There is a fundamental problem with any system used to
difficult to use systematically at the critical point. This type investigate macroscopic superpositions. In order to show that
of problem is common in nonequilibrium quantum physics.any nonclassical “paradox” occurs, one must demonstrate
It represents a fundamental drawback in the Feynmanthat all hidden-variable explanations can be ruled out. Sur-
diagram approach, in which both the coupling to reservoirdrisingly, the semiclassical theory—which is fully realistic—
and the nonlinear terms are treated as perturbations. Oth@orks extremely well in this region. Our conclusion is that
methods involving number-state expansions—like direct sofor this system, any macroscopic quantum superposition that
lutions of the master equation, or the stochastic Stihnger ~ may occur in the transient dynamics cannot be readily dis-
equation—are inapplicable to these large Hilbert spaces, arithguished from classical realism.
are usually insoluble from an analytic approach. We also
note that since this is a nonequilibrium system, it presents an
example of a quantum phase transition in which the usual
canonical-ensemble techniques are simply inapplicable. The model considered here is the degenerate parametric
We treat these questions using the posiftveepresenta- oscillator and is described in detail elsewhgt¢ For com-
tion [14], combined with two matched expansion techniquespleteness, we repeat the definitions of the Hamiltonian here.

II. HAMILTONIAN AND MASTER EQUATION
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The system of interest is an idealized interferometer, which 2

is resonant at two frequencies; and w,=2w;. It is exter- ar=*x\/—(E-&),
nally driven at the larger of the two frequencies. Both fre- X
guencies are damped due to cavity losses. Down-conversion

of the pump photons to resonant subharmonic-mode photons azzﬁ.
occurs due to g(? nonlinearity present inside the cavity. X

The Heisenberg-picture Hamiltonian that describes this open
system[2] is

(2.6)

It is the behavior in the critical region that we are most
interested in as the usual linearized methods break down.
. o A . Just above the critical region, we see that the quantum sys-
H=Ho+Hiy+ > AT +aT)+Hg. (21  tem has some of the character of a Sclimger “cat.” There
=12 are two possible values for the subharmonic amplitugde
An interaction picture is obtained with the definition that @"d the system prior to detection may be in a transient su-
free evolution is given by perposition state of these amplitudes. This situation has been
analyzed previously for the case of a rapidly decaying
. —n second-harmonic fiel16,17]. Here we investigate it for a
Ho= > hojala. general case. We consider the question from the viewpoint of
=12 asking what signature of the observables of the system would

In the case of resonant down-conversion, with just a secE"title one to claim that a Schdinger cat or macroscopic

ond harmonic, the interaction Hamiltonian is superposition, was responsible.

- A iX ~ - n~pn A. The positive-P representation
Hin/hi=iEla,—a)]+ —[a,al’—aja?]. (2.2 _

2 In order to treat quantum evolution, we now turn to the
o methods of operator representation theory, as described pre-
Herea, ,a, represent the fundamental and second-harmonigiously [1]. We consider two types of representation — the
modes, respectively, whil€ is proportional to the coherent normally ordered positivé representation and the semiclas-
input or driving field at the second-harmonic frequency, assical truncated Wigner method. The positiRerepresenta-
sumed to be at exact resonance with the cavity mode. Usingion equations are used to treat the full quantum evolution,
standard techniqugd5] to eliminate the heat bath, we ob- without any truncation of higher-order derivatives in the
tain the following master equation for the reduced densityFokker-Planck equation. Given appropriate assumptions

operator of the system in the interaction picture: about vanishing boundary terntealid for y<vy;) , the fol-
R lowing stochastic equations are obtained, for any driving
dp 1 PO field &:

= —[Hin,p]+ y1(2a1pa] - aja;p—paja;)
at ih "
o dag=[—yia1+ xa; az]dt+ Vyadw(t),
+y2(28,pa} —ajap — paja,), 2.3
day =[— y1aq + xaya; Jdt+xa, dwy(t),
wherey; are the internal-mode amplitude-damping rates.

In the classical limit, the system has the well-known clas- 1,
sical equations of intracavity parametric oscillation, day=| = y2ar+ &~ X% dt,
da'l
R + * 1
dt [~ riatxai ezl da, =| — y,a, +E— Exafz dt. (2.7
%: — gt E— %Xaf _ (2.4) The nonvanishing stochastic correlations are given by

. L - (dw(t))=0,
These equations are valid in the limit of large photon num-
ber. There is a phase transition at the critical driving field of (dwi () dw (1)) = S dt. (2.9
E=E.=vy1y,/x, corresponding to an intracavity photon
number ofN.= yf/)(z . For driving fields below this value, This means thatlw,(t) represent two real Gaussian, uncor-

one has related stochastic processes, so that the amplitude of the sto-
chastic fluctuations that act on the signal mode are dependent
a;=0, on the pump-field dynamics through the texfras.
ay=¢ly,, 29 B. The semiclassical theory
while for fields above this value, the signal field, is We can also write @&number phase-space equation using
bistable, with an approximate form of the Wigner representatid8],
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which is equivalent to stochastic electrodynamics. This carsimilarly, we can define-number stochastic quadrature vari-
be mapped into the following stochastic differential coupledables within the relevant representations, thus giving
equations:

Xj=(aj+ ar),
day=[— yra1+ o ay]ldt+ ysdwi(t),
1
= (ai—a
da =[ - y;a% + xeye} Jdt+y,dws (1), Yimy (e =a). 219
X - Of most interest here ig; since this is the low-noise,
=|- —Zaf+ + ; ; ;
da v2a i té dt Vyzdwo(t), squeezed quadrature; the instantaneous correlation functions
of the intracavity field operators are called the moments. The
_ X 4o fundamental property of the positi@+epresentation is that
daj =| = y2a3 - Ea’f +&dt+ \/V—ZdWS(t)- 29  the ensemble average of any polynomial of the random vari-

ablea anda* exactly corresponds to the Hilbert-space ex-
Heredw,(t) is now acomplexGaussian white noise whose pectation of the corresponding normally ordered product of
mean and variance are given by the annihilation and creation operators. The fundamental

property of the Wigner function is that the ensemble average

(dw,(1))=0, of any polynomial weighted by the Wigner density corre-
sponds(approximately, for the truncated Wigner cage the
(dwi(t)dw]" (1)) = §dt. (2.10  expectation of the corresponding symmetrized product of the

annihilation and creation operators. Therefore, the truncated

The above equation is identical to the equation derived ifneory with a positive Wigner function can be viewed as
positive representation when one discards the noise termgqyivalent to a local realistic hidden-variable theory, since

both methods reproduce the well-known classical equationgne can obtain quadrature fluctuation predictions by follow-
in this limit. ing an essentially classical prescription.

C. Observable moments and spectra lll. SCALED EQUATIONS: POSITIVE- P

The details of how observable moments and spectra are REPRESENTATION

ca_lculated in the _posmvP- _stochastlc method and the In order to avoid the divergences of the previous method
Wigner representation are given in the previous pdfér o ) . .

) ; . . at the critical point of this system whet&=¢&;, we define
The technique for treating external-field spectra was |ntro—neW scaled quadrature variables and use a different expan-
duced by Yurkd 3], and by Collett and Garding#].

These external-field measurements are obtained from th%cfgl g[l_g]llla\l/@ |r;15|de .the dc.:rltlcal_ rtlag|on Of'# 1
input-output relations of =|&lE, g, whereg is a dimensionless coupling con-

stant(typically g<1) defined by

DoY) =297y (1) — DI"(1), (2.12)
. . g= .
where ®{"(t) and ®{"(t) are the input and output photon V2Y172

fields, respectively, evaluated at the output-coupling mirror. )
The most efficient transport of squeezing is obtained if wel he new pump-mode variablé now corresponds to the real

assume that all the signal losses occur through the outp§Caled depletion in the pump-mode amplitude, relative to the
coupler, so thaty; ="', We will assume this to be the undepleted value at the critical point. The signal-mode vari-

case. able x{ now describes the critical fluctuation amplitude
The quadrature variables of the system have the definiscaled to be of order 1 at threshold, whylg is simply de-

tions fined asy,. The definitions are

%= (3,+a)), Xi=1gx,,

L1 . YI=VY1,

yjzi—(aj—aJ-T). (2.12

o LixXe

There are also corresponding external-quadrature-field vari- X2_§ Ty '

ables, defined as

S — (Houty goutt 5= ﬁ 3.1
K= (DUt pout Vi=\ 5z .

~ 1 . -
Yj:i_((bjput_(bjput’r).

It is convenient to also define a new scaled time and driving
field as
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-1 1|¢ 1
7]:%: g[g—c—l}, ng_O):EXg_O)X(ZO)dT'F \EdVVi%),
=710t (32 gdyi”=—2y{Vdr+ V2gdwfp),
The parameter, is a measure of how close the driving field gdx? =y, (25— xP—[x{M12/2)d,
is to its value at the bifurcation threshold, scaled in terms of
the coupling constant so that the critical region of large fluc- gdye = — 5, (y P+ xPy{ydr., (3.5
tuations is defined bym| <1 . The time has now been scaled
both by the decay rate in the signal mogeand the param- The Gaussian white-noise increments{?) , dWﬁ’ have
eterg. the variance
In the case of the positivB-representation, the equations (0)12\\\ _ W02y —

in the new variables are functions of the dimensionless pa- (([dwy 1)) = (({[dwy']9))) =d .

rametersy, 7, and v = y2/v1, A significant point about these equations is that in the

1 squeezed quadrature, thy§”) solution can be worked out
dx§=§[x§x§+ gySySldr+ 2dwy, without reference to any of the other variables, and it gives
zero noise in the external quadrature at zero frequency. Of
g course, couplings between the variables will emerge to
dyE= — | 2yC+ = (xSyS— yox©) |dr—i V2gdwi, higher orders in the expansion, and this generates the actual
9dys Yi 2( 2V17¥2 98V critical fluctuations in the squeezed quadrature. Alsoyg%b
) variable is simply driven by the other fields and can be ob-
gdG=y[27—x5— (x]—gy; )/2]dr, tained as soon as the other fields are known.

gdys=—y[y5+xiyildr. (3.3 A. Critical fluctuations

We now consider what happens at or near the classical
threshold of=0. In a model where the second-harmonic
generation does not cause the pump mode to deplete, we

The Gaussian white-noise increme®;. (i=x,y) are
not independent, and have the following properties:

(dwi,0)=0, would havex{?)=27, and at threshold the critical fluctua-
tions inx, would diffuse outward without any bound. When
(dW2)=(dwi)=(1+gx,/2)d, depletion is included, the critical fluctuations in the quadra-
ture x4 are finite, but very slowly varying compared to those
(dwydw,o) = g3 y,)d T (3.4) in the other variables. The pump field can therefore be adia-
yc XC, . .

batically eliminated to first order in the expansion.

We can develop an asymptotic theory in the sngaliinit Near thres_holdq 7<<l) the de;cay term in the unsqueezed
for the critical region, just as easily as below threshold. Theluadrature, is roughly —x;, which is of order 1. The pump
result is a simple theory that correctly predicts the scaling of0de Will be depleted, so obviousks must be negative in
the critical and squeezing fluctuations, as well as makingrder for this to be stable. The scaled pump-field decay is
close predictions of their size for finig It is important to ~ ¥r/9, and the squeezed-quadrature decay is of ordgrif/

note here the presence of th@dwyc term in these equa- 77 is much larger thaug, it_is possible to adiabatically elimi- _

tions. This scaling factor of/g, is added to ensure that the nate both .the pump amplltude'qnd the squgezed quadrature n

fluctuations in this variable occur up to an order equivalemthe teqliJ_atIOtES fI(_)r _ttheflargel critical ﬂulclttuanomls ?tlwniethwe'

to that of other mean values. This simplifies the procedure of'® %Im? e ":;]' Od sma tt]h we sha tatgsume a IIS I?h

truncating the deterministic and noise terms to a given ordePOSSIDI€ o zeroth order in the asymptotic expansion. In the
The approximation we use here entails expanding the stoe-‘d""lb"’ItIC eI|m|nat|or], we mqst solve for thg steady-sta;e. val-

chastic trajectories in an asymptotic seriegjrand solving ues of the pump;, given an mstantaneou_s f|r§t-order critical

the resulting equations on a term-by-term basis. This entailguc(téj)at'onxl' To leading(zeroth) order this gives, wherg

a power-series expansion similar to the one used below X1

threshold, except with new variables X(zo): 2 n—x212. (3.6
X i g”x(“) Substituting in the equation fo;, we find that
n=0 e
dx=(px—x34)d 7+ \2dw,,. (3.7)
ye= > gy This equation is a standard form of the stochastic equation
I 720 I [20], which is the real cubic process often found at a critical
point, even for thermal equilibrium systems. The solution for
The first set of equations are the distribution ofx is given by
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P(x) = exp( 7x?/2—x*/16).

1
gd(y}) = =2 1+2yi+ S9(X+X2yi Y221 |d7
The steady-state critical variance»y is given to zeroth
order by +2\gyidwyc,
f x*dx exp( 7x?/2—x*/16) gdz=|—2z,+ gyz( —x2+gy2+2g) [dr+ Vgxydw,,
(x))O=(x*) = . (39
dx exp( 7x2/2—x*116) + gy dW,,. (3.11)

. - . - The squeezing variance at threshold from E31J) is
The variance of the critical fluctuations at the crltlcql obtained by taking expectation values. At the steady state,

point, =0, is therefore given to lowest order by the vari- (d(y2))=0. In addition, the expectation value of any noise
ance of a cubic process, which is a ratiolofunctions, . ) ;
term is always zero in an Ito equation, so that

AT(314)

2 —
(M)“”—m—

g
1.35D... . (3.9 (Y= Z<(1+YE)X2—Y221>(O)- (3.12

In a normally ordered representation, the normally or-
cljefred v«gtr5|on of ”;e. q]LcJadratlt_Jire varlan;:e tc;]peratgr d'.ﬁe{E bXny X; variable is trivial to zeroth order, as these must fac-
rom IS symmetric form. However, 10 this order in e 4,0 Thys we can write immediately
calculation, corrections of this size can be neglected. This is
an e>_<amp|e of much more generf_all results on representation ((1+y§)xg>(°)=<1+y§>(°)<xg>(°)= n— (x4
invariance[21] of the large fluctuations that occur near criti- (3.13
cal points. In general, these have a behavior to leading order
that is rather classical, and does not depend on the operator However, the expectation value of correlations between
ordering. Using this, we find the steady state of the uny, andz, does not factorize. We first must obtain the equa-
squeezed quadrature at threshold. Denoting the symmetriion for this correlation. To lowest order this is
expectation value by the subscriptto leading order we get _
(at the critical point gd(y,z1) = —[2Y,+ v, (Yot 21)]Z;d 7+ (N0isO.

The expectation value of the correlation betwsgrand

~ 1 ) 4T (3/4) The noise correlations do not matter, since we can imme-
(X1>s:§<x )= gr (14 diately take expectation values and obtain

M 2\(0) _ Yr 2
2-1-%(21> 4+2'yr<x )

This variable has the critical slowing down expected at <y221>(0):
threshold, that is, the unsqueezed signal quadrature is the one
in which the critical fluctuations occur. The value for the size . ,
of the critical fluctuations can be used to calculate the deple- 10 obtain this result we have once again used the factor-
tion of the scaled pump-mode amplitude Using Egs(3.2) ization properties of thg, fluctuations to zeroth order. Com-

and(3.8), to first order ing it is bining the above results together, we find that the steady-
’ state variance of the squeezed quadrature up to first order in
xP=27—(x?)/2. (3.10 9Is
The size of the depletion is consistent withdn*/? con- (92y=— 1 97, g(2+37’r 3. (314
version efficiency for pump photons to signal photons at the 2 4 16\ 2+

critical point. In summary, by using the fact that a cubic o o . .
stochastic equation has a potential solution, the quadrature 1hiS is plotted in Fig. 1, along with the predictions ob-

moments can be obtained for any driving field in the criticalt@ined from the nonlinear corrections to the usual below-
region[20]. threshold theory1]. It can be seen that both theories agree in

an overlap region where-1u=/g . For|1— |<g so that
| 7| <1, the below-threshold theory diverges, and the critical
expansion is needed to obtain correct results.

We can now find the steady-state variance of the squeezed The intracavity squeezing moment for a model with a
quadrature at threshold. Because the fluctuations in thaondepleted pump mode is 1/2. Our theory predicts that a
squeezed quadrature are very small, we must work to highefepleted parametric oscillator will get no closer to this intra-
order in the asymptotic expansion to obtain a nontrivial recavity lower limit than a term that scales gs, that is as
sult. To achieve this, it is most useful to introduce equations\~%2, The best squeezing in the overall moment is, para-
in the higher-order momentﬁ and z;=x;y;. The corre-  doxically, not just below, but rather just above threshold. It
sponding stochastic equations are derived using Ito rules fazan be seen that in contrast to the unsqueezed quadrature, the
variable changes, so that dominant term in the decay to the steady state does not de-

B. Critical squeezing in positiveP representation
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Critical squeezing moment

1
gdx? ==y, 27— xP = 5 (x{7)?|d 7+ 25, Jgdwie( 7).

T T T
S8t ] gdyy) =~ yyPdr+ 2y, Jgdwo(r). (4.2
Py ]
S We can solve for the steady-state values of the pufnp
. Q — . . . .
Vel s neglecting the noise in this quadrature
s ] (0)— o ((ON2/n.
. . X5'=2 X 12; 4.3
0.9 1.1 2 =27=(47) .3
» substituting this expression in the equation §c2r=x we
FIG. 1. Squeezing moment with 2= 1000,y,=0.5. The solid have
line gives the below-threshold expansion; the dashed line gives the dx=[17x—x3/4]+ \/fdwxl(q-). (4.4)

critical expansion.

This equation is the same as obtained in the posRiease,

pend anthe pléTF:-TO%G phort]o? n)ljmur)iéqh's Tiﬁanls tlh(\a/vin enerating the same distribution and, consequently, the same
squeezed quadrature does not experience critical slo (%glady-state critical variance.

down as the unsqueezed quadrature does, and has a linewi
similar to the value below threshold. In practical terms, the
unsqueezed critical fluctuations would be much easier to ob-
serve, as they are the dominant effect at the critical point. ~ Following the same procedure as in the positieepre-
sentation, we can now find the steady-state variance of the
IV. SCALED EQUATIONS: SEMICLASSICAL THEORY squeezed quadrature at threshold going to higher-order in the
) » ) ] asymptotic expansion to obtain a nontrivial result. Introduc-
As in the positiveP equations, we must define new jhg equations in the higher order moments in the new vari-
§caled—quadra§ure_varlables for the ser_mclassmal equaﬂ_onguesy% and z,=xSy¢, the corresponding stochastic equa-
in order to avoid divergences at the critical point. We defing;,s are
these as previously, except fg§, which now must include

Critical squeezing in semiclassical theory

the large symmetrically ordered vacuum fluctuations,
gd(y})=- 2{2%— 1- gyzm gxsyi dr
V2= V2% Ya.
+2+/2gyid ,
The equations in these new variables are now \/—gyl Wya(7)
1 \/a 2,,C 2,,C c
dxy =3 [x{x5+ Voyeysldr+ 2dwy, (7), gd(zy)=| -2z, + 7X1Y2+9\/EY1Y2 dr+v2gx5dwy, (7)
7 . +\2gydw (7). (4.5
—| _ c, Y2 c,c_ 2 c,C
gdy‘i—{ 2y1t 2 2T 5% dr+ @dwyl(ﬂ’ The squeezing variance at threshold is obtained from the
above equation taking the expectation values. At the steady
1 state we have
gdxg: Vr[zn_x(z:_ E(Xi_gyi) d7'+27r\/§dwx2( 7),
1 Vg g
=S+ (y5z1)— 5 (xSy2). 4.6
0di=— n Y5+ VXYl + 2y gawa(n), (4.0 W=g g Vet (49

where the nonvanishing moments of the noise variables are The expectation value of the correlation betwggnand
5 X5 variables is trivial in zeroth order, as this must factorize.
(dwZ)=(dw)=dr. Thus we can write

The stochastic equations can be solved by matching the (xSy2)YO=(xS)O)y2) (O = — (x?)/4 4.7
powers of g in the corresponding time-evolution equations.
The zeroth-order set of equations(éiscarding orders up to  and then
one ing in the right side of the above set equatipns

1 g7 ¢ Vg
1 D=5— =+ =)+ ——(y5z1). 4.8
dX&O)ZEXEO)X(ZO)dT-I- \/Edwxl(T), <y1> 2 4 16 > 4 <y2 1> ( )
To obtain the correlation betweerj and z; we need to
gdy?=—2y{Vd 7+ \2gdw(7), write the equation for this correlation
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\/6 infinite fluctuations in both quadratures at the critical point.
gd(ysz)=1yS| —2z,+ 7xiy§+g\/§y§y§ In the region wherdu—1|<g, much better agreement is
naturally obtained with the critical-point expansion of the
present paper, which predicts a value ¢¥5)+0.5
+z3[ — v (Y5 +gz,)] [ d7+\2g9x§ySdw,, (1) =0.00375. This agreement verifies our analytic prediction
that the total squeezing, integrated over all frequencies, is
" C\,C 4 _ _ actually lower at and just above threshold, than_ it _is qu'g
V29Y5y5dw () + 2y, gz dwyo(7). (4.9 below threshold where the zero-frequency squeezing is mini-
To lowest order we get mized. _ _
Very similar results were obtained from the Wigner
Jg Jg/2 semiclassical-theory simulations, which is as expected from
(y5z,) 0= — ;:r—g(zf)(ohr 2% x2y5)©). (4.10  the predictions of the asymptotic theory.
Yr Yr We find that the spectral results for the squeezed quadra-

iure resulted in a value for the zero-frequency spectrum, of
(0)=2.02¢ 10 2+0.4x10 3. This is finite, but much
arger than the optimum squeezing valdé¢ obtained below

Combining the above results together, we find the stead
state variance of the squeezed quadrature up to first ord

n 9 threshold. In other words, we find that the narrow-band
~ g g gl al v squeezing is not as large as just below threshold—but the
Yo=5-7+ 1_6<X2>_ §(2+ (X2)+ A (x*)  broadband squeezing is still improving at the threshold point,
Yr Yr - . .
with an optimum value just above threshold.
1 gy g(2+3%| ,
=277 T16\ 25, | (411 VI. CONCLUSION

We have calculated the quantum fluctuations at the clas-
where we have used the zero-order solutipg)(®=27, . . ) \ ) .
W@ Y sical threshold, using a nonlinear stochastic posiBve-

This result is exactly the same as obtained in posiive- theory, with both asymptotic approximations and a numerical
representation, giving quite confident support for the expres: Y, ymp PP

; . . . chnique.
sion, up to first order in perturbation theory, of the squeezeée . . . - N
quadrature at threshold. At the critical point, the scaling behavior is quite different

from the behavior just below threshold, and must be calcu-
lated by using an asymptotic perturbation theory, valid at the
threshold itself. The total squeezing moment is actually mini-

The value of the nonlinear correction to the spectrum offhized at a driving field just above threshold and scales as
the scaled internal Squeezed quadratlﬁeﬂ), can be Nc_llz. This behavior was confirmed in our simulations. This
worked out from a full numerical simulatidi22] of the rel- apparent paradox can be attributed to the fact that the critical
evant nonlinear stochastic equations. For the simulations, wiuctuations mostly tend to broaden the squeezing spectrum,
chose values of>=10"2, y,=0.5. The simulations used a Which has a strong effect at zero frequency, but does not
total dimensionless time interval of,,,=1000. Time steps diminish the total squeezing moment, which is integrated
of A7=0.1 andA7=0.2 were compared to ensure conver-oVver all frequencies. . _
gence. The algorithmic technique is described elsewf2se A calculation with the truncated Wigner method, or semi-
and uses a semi-implicit central-partial-difference technique¢lassical technique, was also carried out. Well below thresh-
As done previously, to obtain the small nonlinear correctiong!d, we found in a previous paper that while the linear terms
near the optimum squeezing, we simulated the differenc@greed with full quantum calculation, nonlinear corrections
between the linear and nonlinear forms of the stochasti@nd higher-order correlations tended to disagree, especially
equation, in order to minimize sampling errors. It was alsofor low second-harmonic losses. However, at the critical
useful to initialize thex quadratures with a Gaussian en- Point, the situation changes. Here, where the dominant terms
semble close to the known steady-state variance, in order @€ nonlinear, we find excellent agreement between the two

V. NUMERICAL SIMULATIONS

reduce the time taken to achieve equilibrium. methods. While quantum fluctuations are indeed large at the
Typically, the relative error in the correlations due to finite critical point, it appears that an equally acceptable interpre-
step size was around 16 with these step sizes. tation of the observed noise characteristics exists via a semi-

classical model, which is essentially a type of hidden-
variable theory. Above threshold, when bistability is more
- _ _ pronounced, previous studies have shown that the two mod-
At the critical point, wheren=0, we used 10trajecto- els can be readily distinguished by their tunneling predic-
ries, giving relative sampling errors of typicallyx210~ 2. tions, which are completely differef].
The calculated squeezing moment from the critical point sto-  As we have shown, in the region where incipient bistabil-
chastic differential equation simulations wa¥?$)+0.5 ity is evident, there are large quantum fluctuations and strong
=0.0038-10"“. This is in poor agreement with the below- squeezing. However, due to coupling with the external res-
threshold expansion, which is only applicable for—1| ervoirs, the quantum behavior can be also rather well de-
>g. The below-threshold expansion clearly fails closer toscribed in a semiclassical model. This illustrates the problem
threshold than aboyt=0.97 for this value ofy, and predicts of trying to identify behavior characteristic of macroscopic

Critical squeezing
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superpositions, which might be thought to exist in this situ-serving Schrdinger-cat-like behavior in a physical system
ation. We suggest that it is necessary to prove that ncoupled to the outside world. Nevertheless, the present
classical-like hidden-variable theory can describe the obtheory does give a case in which critical quantum fluctua-
served behavior, if we wish to ascribe any paradoxical intertions are soluble for a nonequilibrium phase transition, which
pretation to the observed results. Ideally, this would necessidoes not have a Gibbs ensemble solution.

tate the demonstration of a macroscopic Bell inequafit).

In the present case, the semiclassical description — which
is essentially a hidden-variable theory — is able to accu-
rately reproduce the quantum predictions near the critical We acknowledge the financial support of FAPE8Pazil)
point. Thus, it seems that there is no uniquely “catlike” be- and the Australian Research Council. One of the authors
havior in the results we obtain here, at least for the parametdK.D.) would like to acknowledge the hospitality of the Uni-
values employed. This is an indication of difficulties in ob- versity of Queensland.
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